Kryterium informacyjne

meto

 

Kryterium informacyjne

Jeśli chcemy w prosty sposób wybrać zmienne, które mają największą moc predykcyjną w stosunku do naszej zmiennej zależnej warto jest wziąć pod uwagę kryterium informacyjne. Jest to bardzo prosty do obliczenia współczynnik i w przypadku gdy naszą zmienną zależną jest dobry/zły kredytobiorca możemy bez używania skomplikowanych narzędzi przeprowadzić w ten sposób prostą selekcję zmiennych. A w przypadku gdy stosujemy później modele vintage’owe taki wybór zmiennych okazuje się często być wystarczający.

Zatem jak obliczyć wartość IV?  Najpierw musimy zdecydować jaki klient jest dobry a jaki zły. Następnie obliczamy WOE (Weight of Evidence). WOE = ln (%złych/%dobrych). Natomiast wzór na IV przedstawia się następująco:

IV = ∑(%złych – %dobrych)*WOE

Prosty przykład wyznaczania IV przedstawia poniższa tabela.

 

IV------>
0,36178
Przedziały
Liczba złych k.
Liczba dobrych k.
% złych
% dobrych
WOE
MIV
0-1k
197
354
11%
31%
-1,01919
0,20192
1-3k
450
367
26%
32%
-0,22921
0,01509
3-5k
582
234
33%
20%
0,47805
0,06004
5k+
532
187
30%
16%
0,61243
0,08473
Łącznie
1761
1142

Ogólnie przyjmuje się, że wartość IV poniżej 0,02 świadczy o braku zdolności predykcyjnej danej cechy a wartości powyżej 0,3 świadczą już o dużej wartości predykcyjnej.

Wystarczy zatem wyliczyć IV dla posiadanych zmiennych i wybrać te z najwyższą IV.  W pakiecie R z pomocą przychodzi nam funkcja iv.mult z pakietu woe, która przyjmuje parametry  iv.mult(nazwa zbioru danych, nazwa zmiennej zależnej, TRUE (jeśli chcemy wyświetlić wartości IV)).

Więcej info na:

Modelowanie ryzyka kredytowego czym jest ryzyko kredytowe credit scoring analiza ryzyka kredytowego
Ryzyko kredytowe
Metody oceny zdolności kredytowej
Drzewa decyzyjne
Liniowa analiza dyskryminacji
Analiza regresji logistycznej

Ryzyko kredytowe i psychologia. Psychologia zachowań i osobowości w ocenie zdolności kredytowej Credit Risk & Personality/