Konfirmacyjna analiza czynnikowa CFA

Konfirmacyjna analiza czynnikowa CFA

Konfirmacyjna analiza czynnikowa CFA (ang. confirmatory Factor Analysis) – Czym jest?

Konfirmacyjna analiza czynnikowa jest metodą statystyczną nowej generacji która w końcu spełnia oczekiwania współczesnych badaczy i metodologów. Jak sama nazwa wskazuje, analiza konfirmacyjna ma na celu formalną weryfikację zjawiska i jest stosowana do potwierdzania struktury czynnikowej badanej koncepcji teoretycznej. Konfirmacja modelu teoretycznego nie jest niczym innym jak próbą dopasowania zebranych danych np. wyników kwestionariusza postaw lub testu osobowości do teoretycznej koncepcji leżącej u podstaw konstrukcji tego testu/kwestionariusza/inwentarza zagadnienia. Jest to zupełnie inne podejście niż klasyczne podejście polegające na eksploracyjnej analizie składowych głównych i wyboru rotacji (skośnych lub ortogonalnych) czynników. Podejście to zapewnia bardzo wysoką dokładność wniosków odnośnie testowanego modelu teoretycznego.

Jaka jest wyższość konfirmacyjnej analizy czynnikowej nad eksploracyjną analizą czynnikową?

Główną zaletą jaką posiada konfirmacyjna analiza czynnikowa jest jej elastyczność i możliwość odwzorowania dowolnego układu czynnikowego. W podejściu eksploracyjnej analizy czynnikowej nie ma możliwości ingerowania w korelacje pomiędzy poszczególnymi czynnikami i nie ma możliwości testowania korelacji pomiędzy zmiennymi (co jest cenne w identyfikacji zmiennych niosących podobną informację). Konfirmacyjna analiza czynnikowa pozwala na dowolne manipulowanie korelacjami pomiędzy czynnikami, a także hierarchią czynników jak to widać na rysunku nr 1. Jest to niezwykle cenna kwestia ze względu na to, że pozwala na uchwycenie teoretycznego sensu badanego zjawiska (Charles Spearman by się teraz zawstydził widząc co potrafi konfirmacyjna analiza czynnikowa w badaniach nad inteligencją). Kolejną, i chyba najważniejszą, zaletą jest to, że czasem przy małoliczebnych próbkach ciężko jest odwzorować strukturę czynnikową testowanej koncepcji (problemy z niskimi lub podwójnymi korelacjami). W podejściu konfirmacyjnym każda zmienna ma swoje przewidziane miejsce w modelu pomiarowym, przez co nie ma możliwości aby mogły wystąpić problemy częste w metodzie eksploracyjnej. Model konfirmacyjny potwierdza testowaną koncepcję lub nie (jeśli nie, to analiza jest na tyle sprytna, że jest w stanie zasugerować zmiany znane pod pojęciem indeksów modyfikacji).

Rysunek nr 1.

Czynniki wyższego i niższego rzędu sem

Łatwość łączenia konfirmacyjnej analizy czynnikowej z innymi zmiennymi – powiązanie modelu czynnikowego z modelem regresyjnym (konfirmacyjny model reflektywny).

Metody statystyczne pierwszej generacji (modele regresji, drzewa decyzyjne, analizy czynnikowe, analizy wariancji) ukształtowały nasze myślenie o rzeczywistości i metodologie badawcze. Niemniej wraz z powstaniem nowych metod statystycznych otworzyły się przed badaczami nowe możliwości związane z projektowaniem badań oraz analizą ich wyników. Obiecującym podejściem w konfirmacyjnej analizie czynnikowej jest możliwość jej połączenia z innymi zmiennymi jako determinantami badanych zmiennych lub  modelem reflektywnym (odzwierciedlonym) który w kompleksowy sposób weryfikuje działanie łańcucha przyczyn i skutków uwzględnionych w zbudowanym modelu. Przykład tego podejścia przedstawia rysunek nr 2 i 3. Na rysunku nr 2 obserwujemy cechy latentne (A, B, C, D i E) odzwierciedlane przez zmienne które są ich ekspresją (załóżmy, że cecha A to pytanie o odczuwane korzyści z uprawiania sportu 1 zdrowie, 2 piękno, 3 dobre samopoczucie. B to ryzyko wiążące się z brakiem ruchu 1 brak zdrowia, 2 apatia, 3 trudności z poruszaniem się.  C to intencja do ćwiczeń 1 spacery, 2 jeżdżenie rowerem do pracy, 3 motywacja do ruchu. D to obserwowane rzeczywiste zachowanie, a E to zadowolenie z 1 życia, 2 bliskich,  3, zdrowia i 4 wyglądu. Widzimy również na rysunku strzałki oznaczające kierunek przyczyn. Kierunek tych przyczyn to nic innego podpięte wektory regresji ułożone w odpowiedniej kolejności (występowania przyczyn i skutków). W ten sposób można połączyć wyniki konfirmacyjnej analizy czynnikowej z metodą regresji i weryfikować łańcuchy przyczyn i skutków badanego skrawka rzeczywistości. Na rysunku nr 3 możemy obserwować coś podobnego (też model reflektywny / odzwierciedlony) niemniej o innym (mediacyjnym) charakterze i zmiennymi kontrolnymi (z1, z2) pozbawionymi błędu pomiarowego (np. wiek i posiadane oszczędności).

Zaletą połączenia wyników  konfirmacyjnej analizy czynnikowej z modelem strukturalnym jest to, że dzięki uwzględnieniu w modelu błędu pomiaru (dzięki podejściu refketywnemu) cechy latentnej uzyskujemy wgląd w bliższe rzeczywistości wyniki. Oszacowania wyjaśnionej wariancji są większe, bo są pozbawione szumu związanego z błędem pomiarowym. Fajnie, co?

Rysunek nr 2.

Budowa modelu strukturalnego SEM pełny model pomiarowy

Rysunek nr 3. 

analiza modelowania równań strukturalnych, analiza ścieżek, analiza mediacji, moderacji, konfirmacyjna analiza czynnikowa CFA

analiza statystyczna ryzyka w bankowości

Wymiary umiejętności finansowych w LoanMagazine.pl

Dziś został opublikowany nasz wpis na portalu pożyczek poza bankowych. Tekst odnosił się do badania weryfikującego trafność wymiarów zdolności finansowych.

W artykule prezentujemy wykorzystanie konfirmacyjnej analizy czynnikowej weryfikującej trafność czynnikową testowanych wymiarów zdolności finansowych.

Link do artykułu jest tutaj.

analiza statystyczna ryzyka w bankowości

Zastosowanie czynnikowej analizy konfirmacyjnej na przykładzie problematycznych zachowań finansowych

Analiza statystyczna w kontekście potwierdzania kształtu struktury czynnikowej skal pomiarowych – zastosowanie metody konfirmacyjnej analizy czynnikowej na przykładzie wymiarów problematycznych zachowań finansowych.

Ze względu na doskonałe właściwości weryfikacyjne oraz rosnącą popularność konfirmacyjnej analizy czynnikowej, przedstawiamy wpis dotyczący procedury postępowania analitycznego w toku estymacji struktury czynnikowej skali problematycznych zachowań finansowych.

Opis kroków podjętych w celu wykrycia i potwierdzenia wymiarowości badanych konstruktów przedstawia poniższy link odsyłający do PDF z raportem.

Zastosowanie czynnikowej analizy konfirmacyjnej na przykładzie problematycznych zachowań finansowych <- klik

Wyciskanie sensu z Alfy Cronbacha – analiza rzetelności.

meto

 

Wyciskanie sensu z Alfy Cronbacha 

Edukatorzy medyczni próbują stworzyć rzetelne i wiążące testy i kwestionariusze by zwiększyć trafność swoich szacunków i ocen. Trafność i rzetelność są dwoma fundamentalnymi elementami w ocenie narzędzi pomiaru. Narzędzia mogą być konwencjonalną wiedzą, umiejętnością lub stosunkiem testów, symulacji klinicznych albo ankiet kwestionariuszowych. Narzędzia mogą mierzyć pojęcia, zdolności psychomotoryczne albo wartości afektywne. Trafność rozumie się jako stopień w jakim narzędzie pomiaru mierzy to co miało zmierzyć. Rzetelność natomiast traktuje się jako zdolność narzędzia do wykonywania spójnych pomiarów. Powinno się zaznaczyć, że rzetelność narzędzia jest silnie powiązana z jego trafnością. Narzędzie nie może być trafne jeśli nie jest rzetelne. Jednakże, rzetelność narzędzia nie zależy od jego trafności. Jest możliwe by obiektywnie zmierzyć rzetelność narzędzia i w tym tekście wytłumaczymy znaczenie Alfy Cronbacha , najszerzej używanej obiektywnej miary rzetelności.

Liczenie alfy stało się powszechną praktyką w medycznej nauce badawczej kiedy w użyciu są złożone miary pojęcia albo konstruktu.

Dzieje się tak dlatego, że łatwiej jest użyć porównania z innymi szacunkami (np. retest rzetelności szacunków) ponieważ wymaga to zastosowania tylko jednego testu. Jednak pomimo powszechnego używania alfy w literaturze, jej znaczenie, właściwy sposób użycia i interpretacje nie są łatwo zrozumiałe. Dlatego uważamy, że ważnym jest aby wytłumaczyć zasadnicze założenia alfy aby promować efektywne jej używanie. Trzeba podkreślić, że celem tego tekstu jest skupienie się na Alfie Cronbacha jako wskaźniku rzetelności. Alternatywne metody mierzenia rzetelności opierające się na metodach psychometrycznych, takie jak teoria czynnika G albo teoria reagowania na pozycje testowe mogą zostać użyte by monitorować i poprawiać jakość badań OSCE, ale o nich nie będzie tutaj mowy.

Co to jest alfa Cronbacha?

 

Alfa została rozwinięta przez Lee Cronbacha w 1951 by zapewnić miarę wewnętrznej spójności dla testu albo skali; jest to wyrażone liczbą między 0 i 1. Wewnętrzna spójność opisuje stopień w jakim wszystkie pozycje w teście mierzą to samo pojęcie albo konstrukt i stąd jest to połączone ze wzajemnym powiązaniem ze sobą pozycji wewnątrz testu. Wewnętrzna spójność powinna być ustalona, by zapewnić trafność, zanim test zostanie użyty do badań albo celi badawczych. Dodatkowo, rzetelność szacuje pokazaną ilość błędów pomiarowych w teście. Mówiąc prosto, ta interpretacja rzetelności jest korelacją testu samego ze sobą. Podniesienie do kwadratu tej korelacji i odjęcie od 1.00 sprawi, że powstanie wskaźnik błędów pomiaru. Na przykład, jeżeli test ma rzetelność na poziome 0.80, występuje 0.36 zmienności błędu (błąd losowości) w wyniku (0.80×0.80=0.64; 1.00-0.64=0.36). Jeżeli oszacowana rzetelność rośnie, fragment wyniku testu przypadający na błąd będzie malał. Oczywiście rzetelność testu ujawnia efekt błędu pomiarowego dla obserwowalnego wyniku raczej dla grupy badanych niż pojedynczego badanego. By obliczyć efekt błędu pomiaru na obserwowalnym wyniku pojedynczego badanego, musi zostać wyliczone standardowy błąd pomiaru (SEM).

Jeżeli pozycje w teście są ze sobą skorelowane, wartość alfy wzrasta. Jednakże, wysoki współczynnik alfa nie zawsze oznacza wysoki stopień spójności wewnętrznej. To dlatego, że alfa jest również kształtowana przez długość testu. Jeżeli długość testu jest niewystarczająca, wartość alfy spada. Zatem, żeby zwiększyć alfę, więcej pozycji sprawdzających tę samą rzecz powinno zostać dodane do testu. Warto też pamiętać, że alfa jest właściwością dla wyniku testu ze specyficznej próbki badanych. Dlatego badacze nie powinni polegać na wydanych przez alfę oszacowaniach tylko mierzyć ją za każdym razem gdy test jest przeprowadzany.

Użycie alfy Cronbacha

 

Niewłaściwe zastosowanie alfy może doprowadzić do sytuacji, w której test albo skala zostaną błędnie odrzucone lub test zostanie skrytykowany za wygenerowanie niewiarygodnych wyników. By uniknąć takiej sytuacji, zrozumienie powiązanych ze sobą pojęć wewnętrznej spójności, jednorodności lub jednowymiarowości może być pomocne przy używaniu alfy. Wewnętrzna spójność dotyczy wzajemnie powiązanych próbek pozycji testu, podczas gdy jednorodność odnosi się do jednowymiarowości. Mówi się, że miara jest jednowymiarowa jeśli jej pozycje mierzą pojedynczą, ukrytą cechę albo konstrukt. Wewnętrzna spójność jest potrzebnym, ale nie jedynym warunkiem zmierzenia jednorodności czy jednowymiarowości w próbce pozycji testu. Zasadniczo, pojęcie rzetelności zakłada, że jednowymiarowość występuje w próbce pozycji testu, a jeśli to założenie nie jest spełnione, to powoduje duże niedoszacowanie rzetelności. Zostało solidnie udowodnione, że wielowymiarowy test nie koniecznie musi mieć mniejszą alfę niż jednowymiarowy test. Zatem bardziej rygorystyczna wartość alfy nie może być po prostu zinterpretowana jako wskaźnik wewnętrznej spójności.

Analiza czynnikowa może być użyta do określenia wymiarów testu. Inna technika, na której można polegać bywała również używana i zachęcamy czytelnika do zapoznania się z tekstem „Applied Dimensionality and Test Structure Assesment with START-M Mathematics Test” i porównania metod do oceniania wymiarowości i zasadniczej struktury testu.

Dlatego alfa nie tylko mierzy jednowymiarowość zestawu pozycji, ale może być użyta do potwierdzenia czy próbki pozycji są faktycznie jednowymiarowe. Z drugiej strony, jeśli test ma więcej niż jedno pojęcie lub konstrukt, może nie mieć sensu liczenie alfy dla testu jako całości jako że większa liczba pytań będzie niechybnie nadmuchiwała wartość alfy. Zasadniczo dlatego alfa powinna być liczona dla każdego pojęcia, a nie dla każdego testu albo skali. Implikacja podsumowującego badania zawierającego niejednorodne, oparte na case’ie pytania jest taka, że alfa powinna być liczona dla każdego z osobna.

Co ważniejsze, alfa jest osadzona w modelu równoważności co zakłada, że każda pozycja testu mierzy taką samą utajoną cechę na tej samej skali. Dlatego jeżeli wielokrotne czynniki/cechy są podstawą pozycji na skali, jak pokazała analiza czynnikowa, to założenie jest łamane i alfa zaniża rzetelność testu. Jeżeli liczba pozycji testu jest za mała to także złamie założenie o równoważności i zaniży rzetelność. Kiedy pozycje testu spełniają założenie o równoważności modelu, alfa lepiej szacuje rzetelność. W praktyce alfa Cronbacha jest dolną granicą szacunku rzetelności ponieważ niejednorodne pozycje testu mogą łamać założenia równoważności modelu. Jeżeli wyliczenie „wystandaryzowanej pozycji alfa” w SPSS jest wyższe niż „alfa Cronbacha”, dalsze badanie równoważności pomiaru może być niezbędne.

Numeryczne wartości alfy

 

Jak wcześniej wspomniano, liczba pozycji testu, wzajemnych powiązań testu i wymiarowości oddziaływania nad wartością alfy. Są różne doniesienia na temat dopuszczalnej wartości alfy, poczynając od 0.70 aż do 0.95. Niska wartość alfy może być powodowana małą liczbą pytań, słabą wzajemnością powiązań pomiędzy pozycjami albo niejednorodnymi konstruktami. Np. jeżeli niska alfa wychodzi na skutek słabej korelacji pomiędzy pozycjami wtedy niektóre powinny być powtórzone lub usunięte. Najłatwiejszym sposobem by je znaleźć jest przeliczenie korelacji dla każdej pozycji testu z całkowitym wynikiem testu; pozycje z niską korelacją (w okolicach zera) są usuwane. Jeśli alfa jest zbyt wysoka, może to sugerować, że niektóre pozycje są zbędne jako że testują to samo pytanie ale nieco inaczej wyglądają. Rekomendowana jest alfa o maksymalnej wartości 0.90.

Streszczenie

 

Wysokiej jakości testy są potrzebne aby ocenić rzetelność danych zawartych w badaniach naukowych. Na alfę wpływa długość i wymiarowość testu.  Alfa jako wskaźnik rzetelności powinna spełnić założenia o istotnej równoważności. Niska alfa pojawia się gdy te założenia nie są spełnione. Alfa nie mierzy po prostu jednorodności i jednowymiarowości testu, jako że na rzetelność testu działa także jego długość. Dłuższy test zwiększa rzetelność niezależnie od tego czy test jest jednorodny czy nie. Wysoka wartość alfy (>90) może sugerować pewien nadmiar i pokazuje, że test powinno się skrócić.

Wnioski

 

Alfa jest ważnym pojęciem w ocenie diagnozy i kwestionariuszy. Jest ważne by oceniający i badacze oszacowali jej stan by dodać trafności i precyzji w interpretacji danych. Tym niemniej jednak alfa często stosowana jest bezrefleksyjnie i bez odpowiedniego zrozumienia i interpretacji. W tym poradniku spróbowaliśmy wyjaśnić zasadnicze założenia wyliczania alfy, czynniki wpływające na jej wielkość i sposoby na jakie można interpretować jej wartość. Mamy nadzieję, że przyszli badacze będą bardziej krytyczni analizując wartości alfy w swoich badaniach.

 

Bibliografia:

Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16(3), 297–334. https://doi.org/10.1007/BF02310555

Kock, N. (2020). WarpPLS User Manual: Version 7.0 (7th ed.). ScriptWarp Systems.

 

pomoc, usługi i analizy statystyczne metodolog

Wprowadzenie do analizy równań strukturalnych / SEM / Analizy ścieżek / Konfirmacyjnej analizy czynnikowej / CFA

meto

 

Analiza modelowania równań strukturalnych ma na celu analizę kształtu i siły zależności mających charakter funkcji liniowych pomiędzy zmierzonymi zjawiskami. Podstawowym przykładem modelu strukturalnego jest model regresji liniowej, który wyjaśnia wpływ zmiennej niezależnej na ilościową zmienną zależną.

Sytuacją wyjściową by modelować strukturę równań liniowych powinna być teoria dotycząca badanego zjawiska. To właśnie ona wskazuje na zależności / wpływy, które powinny być uwzględnione w estymacji układu modelu. Analiza równań strukturalnych umożliwia szacowanie zależności przyczynowo skutkowych oraz korelacyjnych. Model taki może być prezentowany za pomocą funkcji lub tabeli, choć najfajniejszą i zarazem bardzo elegancką  formą prezentacji jest układ graficzny.

Dzięki wymodelowaniu logiki zależności i wpływów można szacować teoretyczną postać macierzy wariancji-kowariancji zmiennych budujących model. Szacowanie modelu opiera się na porównaniu oszacowanych parametrów macierzy wariancji-kowariancji wynikających z modelu tak aby była ona podobna do skonceptualizowanej teoretycznej macierzy wariancji – kowariancji. Nawet w przypadku kiedy zbuduje się model z najlepszych parametrów, ale nie będą one wpływały na dopasowanie to trzeba odrzucić model lub go przekształcić. Oczywiście trzeba pamiętać, że przekształcanie modelu może doprowadzić bardzo szybko do dopasowania modelu do danych, ale może on wtedy nie pasować do wcześniej ustalonych założeń teoretycznych. W momencie kiedy obie macierze do siebie są dopasowane pod względem kryteriów dopasowania ( RMSEA, GFI, AGFI, Chi Kwadrat, CFI itp) można przyjąć, że model wraz z teorią jest jest znacząco ze sobą powiązany. Wtedy i tylko wtedy można przejść do drugiego kroku analizy jaką jest ocena parametrów opisujących model kierunków i sił zależności/wpływów. W przypadku kiedy model nie jest dopasowany do teorii (danych) metodologia postępowania w zmianie układów równań strukturalnych podrzuca sugestie (analityczne) dotyczące tego jak zmienić model by uzyskać zadowalające dopasowanie. Sugestie te obejmują dodanie i usunięcie parametrów, niekiedy sugerują też zmianę układu zależności/wpływów. Modelowanie strukturalne to narzędzie do analizy zmiennych ciągłych. Często jednak używa się go analizowania zmiennych zakodowanych na porządkowym poziomie pomiaru. Przy takim  zastosowaniu ów skali warto zatroszczyć się o to aby rozpiętość skali była możliwie jak największa. Pomiary w analizie równań strukturalnych można podzielić na da typy: pierwszym typem są zmienne obserwowalne, a drugim zmienne nieobserwowalne. Zmienne obserwowalne sa po prostu zmiennymi w bazie danych. Zmienne nieobserwowalne posiadają składniki losowe, które charakteryzują tę część zmienności modelowanych zjawisk, które nie wyjaśniają zmienne umieszczone w modelu równań strukturalnych. Pozostałe zmienne nieobserwowalne, to pomiary opisujące badane uniwersum zjawisk, które ze względu na swoją naturę wymagają mniej lub bardziej zaawansowanego pomiaru lub obróbki statystycznej. W przypadku nauk o zachowaniu większość pomiarów ma właśnie taką charakterystykę. W tym tekście skupimy się na modelowaniu równań strukturalnych biorąc pod uwagę właśnie zmienne obserwowalne i ewentualnie składniki losowe. Prostym przedstawieniem tej grupy modeli o jakich jest mowa to analiza regresji liniowej. Wzięcie pod uwagę korelacji, co jest możliwe dzięki modelowaniu strukturalnym pozawala przezwyciężyć problem interkorelacji (współliniowości), często spotykanej w tego typu modelach. Chodzi w tym o to, że oszacowania parametrów analizy są zazwyczaj zawyżone ze względu na zbyt mocne powiązanie predyktorów co w konsekwencji zwraca mniejszą istotność oszacowań związków/wpływów zmiennych. W modelach strukturalnych można ponad to analizować nie tylko bezpośrednie, ale także efekty pośrednie (mediacji/supresji) dzięki czemu można szacować modele wielorównaniowe. Modelom strukturalnym ze zmiennymi latentnymi (nieobserwowalnymi) poświęcimy osobny wpis. Niemniej to o czym będzie mowa w dalszych wpisach ma zastosowanie i w analizie równań strukturalnych, i w konfirmacyjnej analizie czynnikowej (Confirmatory Factor Analysis).

W skrócie :

Modelowanie równań strukturalnych posiada potencjał w analizie zjawisk postulowanych przez teorię, czyli powiązania różnych zależności pomiędzy badanymi zjawiskami. Model strukturalny jest skonstruowany z pomiarów ciągłych (skala ilościowa) lub porządkowych (przy zachowaniu założenia o rozpiętości skali) oraz zakłada liniową funkcję zależności pomiędzy zmiennymi. Zmienne te mogą być obserwowane lub latentne (nieobserwowalne), a zależności jakie je łączą mogą mieć charakter przyczynowo-skutkowy lub korelacyjny. Model strukturalny może składać się z bardzo wielu równań, a co za tym idzie wielu zaawansowanych zależności.

Poniższy graf ścieżkowy przedstawia empiryczny model przewidywań teorii HAPA (Schwarzer, 2008) zbudowany dla danych związanych z oszczędzaniem. Teoria ta przewiduje, że na chęć do danego zachwoania wpłwywa świadomość ryzyk związnych z brakiem zachowań pożądanych, poczucie własnej skuteczności w wykonaniu zachowania oraz postrzegane korzyści wynikające z podjętego działania (w przypadku poniższych chodzi o oszczędzanie). Wspomniane 3 czynniki determinują intencję do zachowania się. Niemniej by intencja została przekształcona w działanie musi być spełnionych kilka warunków. Są one reprezentowane przez czynniki kontroli zachowania (monitorowanie zachowania, utrzymanie poczucia skuteczności itd.). Poniższy model przedstawia wyniki oszacowań modelu równań strukturalnych wykonanych metodą SEM-CB. Więcej na temat modelu czytelnik znajdzie tutaj: Hryniewicz, K. (2019) “Motivation and Action Control in a Saving Lifestyle,” WSB Journal of Business and Finance, 53(1). doi: 10.2478/WSBJBF-2019-0014.

Konfirmacyjna analiza czynnikowa i model ścieżkowy

Przykład układu równań.

Analizę modelu równań strukturalnych najlepiej jest opisać w postaci graficznej, rysując wykres ścieżkowy. Jego różne składowe najlepiej odzwierciedlają elementy układu zmiennych. Zmienne obserwowalne są zazwyczaj przedstawiane jako kwadraty lub prostokąty, nieobserwowalne zmienne są przedstawiane jako kółka (jest to ekspresja zmiennej latentnej, które ma odzwierciedlenie we wskaźnikach obserwowalnych). Relację przyczynową skutkową symbolizuje strzałka, kierunek tej zależności jest oznaczony grotem. Element mający dwa groty strzałki, przedstawia kowarancję (czyli niestandaryzowaną korelację). Wskazuje on zależność pomiędzy zmiennymi (lub obiektami modelu strukturalnego). Każdy element oraz każda strzałka odpowiada jednemu współczynnikowi strukturalnemu. Parametry te opisują moc i kierunek korelacji lub relację przyczynowo-skutkową. Współczynnikami przyczynowo skutkowymi są standaryzowane lub niestandaryzowane współczynniki regresji. Współczynnikami relacji są kowariancje (niestandaryzowana korelacja) lub korelacje (standaryzowana kowariancja).

Niestandaryzowane współczynniki analizy ścieżek informują o tym, o ile jednostek (wyrażonych w danej jednostce pomiaru) zmieni się zmienna zależna, kiedy wyniki pomiaru zmiennej niezależnej wzrosną lub opadną.

Współczynniki standaryzowane w równaniach strukturalnych informują o ile zmieni się wynik zmiennej zależnej (wyrażonej w odchyleniach standardowych) w momencie kiedy wynik zmiennej niezależnej zmniejszy się lub zwiększy o jedno odchylenie standardowe.

Wariancja składnika losowego to zmienność która nie została wyjaśniona przez model.

Współczynnik korelacji R2 (lub inaczej współczynnik determinacji) informuje badacza o tym ile zmienności zmiennej zależnej jest wyjaśniane przez zmienne kontrolowane w układzie równań strukturalnych.